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Abstract

An intramolecular 3+4 cycloaddition between vinylcarbenoids and furans followed by tetrahydrofuran
ring-opening represents a direct approach for construction of the core of CP-263,114. © 2000 Published
by Elsevier Science Ltd.

Recently, CP-263,114 (1) has become a synthetic target of great interest on account of its
novel structure and promising biological activity.! The research activity in this area has included
numerous model studies® and four recent reports of total syntheses of CP-263,114 by Nicolaou,?
Danishefsky,* Shair’ and Fukuyama.®

HO,C CP-263,114

Intrigued by the possibility that an intramolecular [3+4] cycloaddition between vinylcar-
benoids and furans would be a novel disconnection for the synthesis of CP-263,114, we have
begun exploring the synthetic potential of this chemistry.” We have previously reported that the
vinylcarbenoid precursor 2 available in three steps from methyl 4-formylfuran-3-carboxylate
readily undergoes the 3+4 cycloaddition followed by bromination to form 3.”° In this paper we
describe our exploratory studies to develop methods for the conversion of the bromo derivative
3 to the bicyclo[4.3.1]Jnonane system 4. The formation of 4 was considered to be an important
stage for the eventual synthesis of CP-263,114 because 4 contains the anti-Bredt double bond,
the hydroxy functionality at C-10, an o,B-unsaturated ester which Nicolaou used to generate the
anhydride,® and the keto functionality at C-2 that Danishefsky used to generate the quaternary
center at C-2 (Scheme 1).*
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Scheme 1.

The previous synthetic endeavors directed towards CP-263,114 have shown that densely
functionalized bicyclo[4.3.1]lnonane systems display some unexpected reactivity.>* Our initial
studies also resulted in some unexpected reactivity. All attempts at catalytic hydrogenation of 3
were unsuccessful. Attempts at a retroaldol on 5 (readily formed from 3 by LiAIH, reduction’)
resulted in only desilylation to form 6. Efforts to ring-open the dihydrofuran in 6 using a variety
of bases or TMSOTT also failed (Scheme 2).
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At this stage, it was considered that the bridgehead bromine functionality, which had been
introduced to stabilize the initial [3+4] cycloadduct was now sterically interfering with the
desired synthetic transformations. An attempt at removal of the bromide in 3 with samarium
diiodide resulted in a major skeletal rearrangement and the dihydroindanone 7 was isolated in
29% yield. The clean removal of the bromine functionality was finally achieved by hydrogena-
tion of 6 with Wilkinson’s catalyst, which led to the formation of 8 in 91% yield. The
de-brominated derivative 8 was still sluggish at ring-opening reactions of the dihydrofuran.
Under forcing conditions, however, with an excess of TMSOTT, ring opening of the dihydro-
furan in 8 was achieved, but the product was the unexpected norcaradiene derivative 9 (Scheme

3).
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The unexpected formation of 9 is indicative of interference by the anti-Bredt double bond in
8 by one of two possible mechanisms. The silylated product 10 undergoes ring opening and
deprotonation to form 11, which is capable of a 67 electrocyclization to form 9. Alternatively
the silylated product 12 is initially formed and undergoes a transannular ring opening to form
13, which after deprotonation forms 9. Presumably, compound 3 is formed from an analogous
compound to 9 through cyclopropane ring opening followed by aromatization by means of an
oxidative deformylation (Scheme 4).
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On the basis of the above analysis, it was concluded that it was necessary to remove the
anti-Bredt double bond prior to the ring opening. Treatment of o,f-unsaturated ester 6 with
10% Pd-C under acidic conditions resulted in debromination as well as hydrogenation of the
anti-Bredt double bond. A mixture of epimers at C-11 was initially formed but on treatment
with DBU the mixture equilibrated to diastereomer 14. Treatment of 14 with 5 equivalents of
TMSOTf and 8 equivalents of 2,6-lutidine resulted in formation of the desired ring opened
product 15 in almost quantitative yield. Having now developed an appropriate method for ring
opening, via the tetrahydrofuran, a final series of experiments was carried out to determine if the
ring opening could be achieved with the desired anti-Bredt double bond in place. Reaction of 14
with MsCl followed by reaction with DBU resulted in the formation of the anti-Bredt product
16. Treatment of 16 with TMSOTT followed by silica gel resulted in a very clean ring opening
to form 17 in 92% yield. (Scheme 5)
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In summary, these studies demonstrate that further manipulation of the 3+4 cycloadduct to

an appropriately functionalized [4.3.1]bicyclic system is possible. Having now demonstrated that
the basic chemistry is applicable to the synthesis of the basic core of CP-263,114, future studies
will be directed towards the application of the 3+4 cycloaddition to more highly functionalized
systems so that a much shorter synthetic scheme can be developed.
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